9 research outputs found

    A distance vector hop-based secure and robust localization algorithm for wireless sensor networks

    Get PDF
    Location information of sensor nodes in a wireless sensor network is important. The sensor nodes are usually required to ascertain their positions so that the data collected by these nodes can be labeled with this information. On the other hand, certain attacks on wireless sensor networks lead to the incorrect estimation of sensor node positions. In such situations, when the location information is not correct, the data may be labeled with wrong location information that may subvert the desired operation of the wireless sensor network. In this work, we formulate and propose a distance vector hop-based algorithm to provide secure and robust localization in the presence of malicious sensor nodes that result in incorrect position estimation and jeopardize the wireless sensor network operation. The algorithm uses cryptography to ensure secure and robust operation in the presence of adversaries in the sensor network. As a result of the countermeasures, the attacks are neutralized and the sensor nodes are able to estimate their positions as desired. Our secure localization algorithm provides a defense against various types of security attacks, such as selective forwarding, wormhole, Sybil, tampering, and traffic replay, compared with other algorithms which provide security against only one or two types. Simulation experiments are performed to evaluate the performance of the proposed method, and the results indicate that our secure localization algorithm achieves the design objectives successfully. Performance of the proposed method is also compared with the performance of basic distance vector hop algorithm and two secure algorithms based on distance vector hop localization. The results reveal that our proposed secure localization algorithm outperforms the compared algorithms in the presence of multiple attacks by malicious nodes

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Moment Generating Function Based Performance Analysis of Network Coding Two-way Relaying Using Alamouti Scheme on Fading Channels

    No full text
    Abstract- This article discusses the performance analysis of a network coded relay network. The relay nodes operate in decode-and-forward (DF) mode. The channels are modeled as Rayleigh, Nakagami-m and Rician fading. The overall system performance is improved by using the Alamouti coding scheme. The closed-form expressions of m o m e n t generating function (MGF) are obtained over various fading channels. The system performance is analyzed in terms of SER and outage probability. MGF based approach is followed to derive the closed-form expressions of SER for MPSK modulation schemes. The derived expressions also present the diversity order. The simulation and theoretical results are produced to authenticate accuracy of the system

    Trust-Based Beacon Node Localization Algorithm for Underwater Networks by Exploiting Nature Inspired Meta-Heuristic Strategies

    No full text
    Conventional underwater technologies were not able to provide authentication and proper visualization of unexplored ocean areas to accommodate a wide range of applications. The aforesaid technologies face several challenges including decentralization, beacon node localization (for identification of nodes), authentication of Internet of Underwater Things (IoUTs) objects and unreliable beacon node communication between purpose oriented IoT-enabled networks. Recently, new technologies such as blockchain (BC) and the IoUTs have been used to reduce the issues but there are still some research gaps; for example, unreliable beacon messages for node acquisition have significant impacts on node identification and localization and many constrained node resources, etc. Further, the uncertainty of acoustic communication and the environment itself become problems when designing a trust-based framework for the IoUTs. In this research, a trust-based hybrid BC-enabled beacon node localization (THBNL) framework is proposed to employ a secure strategy for beacon node localization (BNL) to mine the underwater localized nodes via the hybrid blockchain enabled beacon node localization (HB2NL) algorithm. This framework helps to merge two disciplines; it is hybrid because it follows the nature and bio inspired meta heuristics algorithms for scheduling the beacon nodes. The performance of the proposed approach is also evaluated for different factors such as node losses, packet delivery ratios, residual and energy consumption and waiting time analysis, etc. These findings show that the work done so far has been successful in achieving the required goals while remaining within the system parameters

    Trust-Based Beacon Node Localization Algorithm for Underwater Networks by Exploiting Nature Inspired Meta-Heuristic Strategies

    No full text
    Conventional underwater technologies were not able to provide authentication and proper visualization of unexplored ocean areas to accommodate a wide range of applications. The aforesaid technologies face several challenges including decentralization, beacon node localization (for identification of nodes), authentication of Internet of Underwater Things (IoUTs) objects and unreliable beacon node communication between purpose oriented IoT-enabled networks. Recently, new technologies such as blockchain (BC) and the IoUTs have been used to reduce the issues but there are still some research gaps; for example, unreliable beacon messages for node acquisition have significant impacts on node identification and localization and many constrained node resources, etc. Further, the uncertainty of acoustic communication and the environment itself become problems when designing a trust-based framework for the IoUTs. In this research, a trust-based hybrid BC-enabled beacon node localization (THBNL) framework is proposed to employ a secure strategy for beacon node localization (BNL) to mine the underwater localized nodes via the hybrid blockchain enabled beacon node localization (HB2NL) algorithm. This framework helps to merge two disciplines; it is hybrid because it follows the nature and bio inspired meta heuristics algorithms for scheduling the beacon nodes. The performance of the proposed approach is also evaluated for different factors such as node losses, packet delivery ratios, residual and energy consumption and waiting time analysis, etc. These findings show that the work done so far has been successful in achieving the required goals while remaining within the system parameters

    Some Topological Invariants of Graphs Associated with the Group of Symmetries

    No full text
    A topological index is a quantity that is somehow calculated from a graph (molecular structure), which reflects relevant structural features of the underlying molecule. It is, in fact, a numerical value associated with the chemical constitution for the correlation of chemical structures with various physical properties, chemical reactivity, or biological activity. A large number of properties like physicochemical properties, thermodynamic properties, chemical activity, and biological activity can be determined with the help of various topological indices such as atom-bond connectivity indices, Randić index, and geometric arithmetic indices. In this paper, we investigate topological properties of two graphs (commuting and noncommuting) associated with an algebraic structure by determining their Randić index, geometric arithmetic indices, atomic bond connectivity indices, harmonic index, Wiener index, reciprocal complementary Wiener index, Schultz molecular topological index, and Harary index

    Swarm intelligence-based packet scheduling for future intelligent networks

    No full text
    Network operations involve several decision-making tasks. Some of these tasks are related to operators, such as extending the footprint or upgrading the network capacityties. Other decision tasks are related to network functionsnalities, such as traffic classifications, scheduling, capacity, coverage trade-offs, and policy enforcement. These decisions are often decentralized, and each network node makes its own decisions based on the preconfigured rules or policies. To ensure effectiveness, it is important essential that planning and functional decisions are in harmony.; Hhowever, human intervention-based decisions are subject to high costs, delays, and mistakes. On the other hand, mMachine learning has been used in different fields of life to automate decision processes intelligently. Similarly, future intelligent networks are also expected to see intense use of machine learning and artificial intelligence techniques for functional and operational automation. This article investigates the current state-of-the-art methods for packet scheduling and related decision processes. Furthermore, it proposes a machine learning-based approach for packet scheduling for agile and cost-effective networks to address various issues and challenges. The analysis of the experimental results shows that the proposed deep learning-based approach can successfully address the challenges without compromising the network performance. For example, it has been seen that with mean absolute error MAE from 6.38 to 8.41 using with the proposed deep learning model, the packet scheduling can maintain 99.95% throughput, 99.97 % delay, and 99.94% jitter, which are much better as compared to the statically configured traffic profiles
    corecore